EMERGENCY PROCEDURE EP-32

TITLE: LOSS OF RCP'S SUCCESSFUL NATURAL CIRCULATION

APPROVALS: PORC (Vice-Chairman) G. Kunder Date 9/23/75
UNIT SUPT.: E. P. Miller Date 4/23/79
BSH J. A. Berg Date 4/23/79
ALARA J. A. Berg Date 4/23/79

OFFICIAL COPY

Control for Film Copy 4/23/71

REV. 1 DATE 4/22/79

154 212
EP-32 - Loss of Operating RCP

Successful Natural Circulation

1.0 Purpose:
To provide adequate core cooling through natural circulation in the event of loss of the operating RCP.

2.0 References

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1,2,3</td>
<td>Contingency Plan</td>
</tr>
<tr>
<td>Ref. A</td>
<td>Bill Lowe to (Illegible) Telecon Note of 0800, 4/12/79</td>
</tr>
<tr>
<td>Ref. #180</td>
<td>HDT Pressure/Temperature Curve</td>
</tr>
<tr>
<td>Ref. #10</td>
<td>Natural Circulation - Minimum RCS Pressure vs that curve with saturation curve added</td>
</tr>
<tr>
<td>Ref. #43</td>
<td>Preparation for an initiation of natural circulation.</td>
</tr>
<tr>
<td>Ref. #168</td>
<td>Effect of Partial Flow Blockage on N.C.</td>
</tr>
<tr>
<td>Ref. #156</td>
<td>RCP Startup Procedure (B&W procedure 15, Rev. 4)</td>
</tr>
<tr>
<td>Ref. #11</td>
<td>Loss of RC Flow/HPI</td>
</tr>
<tr>
<td>Ref. #(B&W) 77</td>
<td>Loss of RCP - Successful Natural Circulation (B&W 486, 4/19/79)</td>
</tr>
<tr>
<td>Ref. ETSG 071</td>
<td>Loss of Reactor Coolant Pump (R. Keaten 4/19/79)</td>
</tr>
</tbody>
</table>

3.0 Limitations and Precautions

3.1 Operational limits of RCP with backup RCP's available:

a. frame vibration exceeds 5 mils.
 or
b. shaft vibration exceeds 30 mils
 and
 upper seal leakage & return flow increases to greater than 1.9 GPM.
3.2 Operational limits of RCP with no backup RCP available.
 a. Shaft vibration > 70 mils
 or
 b. Upper seal leakage > MW system capability to maintain
 RC system water level.

4.0 Symptoms

4.1 RC Flow in the operating loop decreases or becomes erratic

4.2 Complete loss of RC flow in operating loop.

4.3 RC Pump Trip annunciator.

4.4 RCP limits (section 3) exceeded.

4.5 Indications the RCP has stopped as observed by no
 running current (amps) or vibration.

NOTE: Initial Condition

Heat removal through A OTSG in Steaming Mode
B OTSG H₂O/H₂O loop not yet ready.

Feedwater to OTSG supplied thru FI nozzles.

5.0 Immediate Actions

5.1 Attempt to establish natural circulation

5.1.1 Immediately begin raising RCS pressure to approximately
 900 psig + 100 psig (to increase margin to saturation).

5.1.2 Trip the turbine

5.1.3 Without altering the feedwater lineup or flow rate allow,
 OTSG "A" level to slowly increase to 430" on the wide
 range instrument. Secure feedwater flow, and allow OTSG
 "A" level to decrease to 400". Re-establish feedwater
 flow at the previous rate to increase level to 430".
 Repeat as necessary to maintain level between
 400" - 430".

NOTE 1 - Following the above actions and when equilibrium
 conditions are established, RCS temperature Tc
 should stabilize at about 200 °F.
Note 2 - Natural Circulation is indicated by an increase in RCS \(\Delta T \) to a new value greater than the approximately zero \(\Delta T \) of forced circulation. This \(\Delta T \) is expected to be approximately 10 to 35\(^\circ\) when equilibrium conditions of flow have been achieved. Initially, however, \(\Delta T \) will increase to greater values which could be as much as 15 to 40\(^\circ\) in the five to ten minute period after the loss of RCP, followed by a decrease to the equilibrium \(\Delta T \). The \(\Delta T \) values in this paragraph are provided for information only and are a result of interpretation of analytical data. It should take about 25 to 35 min. to establish natural circulation.

Note 3 - The system will respond slowly to changes while in the natural circulation mode. The loop transport-time is about 20 minutes, therefore, changes in steam demand and feed rate should be made slowly and the system should be given time to equilibrate before additional changes are made.

5.1.4 Manually record and plot \(T_h \), \(T_c \) and \(T_{Stm} \) every twenty (20) minutes. Read and record all operable in-core thermocouples every ten (10) minutes.

5.1.5 If any of the (4) criteria provided below are exceeded, adequate Natural Circulation has not been established, therefore, proceed to step 5.2.

5.1.5.1 If \(T_h \) in the loop with the OTSG in the steaming mode exceeds 420\(^\circ\)F, go to step 5.2.

5.1.5.2 If any thermocouple exceed 1000\(^\circ\)F go to step 5.2.

5.1.5.3 If any three (3) thermocouples have readings exceeding 800\(^\circ\)F go to step 5.2.

5.1.5.4 At least 6 thermocouples must be below 750\(^\circ\)F, otherwise go to step 5.2.

NOTE: After natural circulation has been established it is expected that \(T_h \) and \(T_{Stm} \) will be nearly equivalent. However, \(T_{Stm} \) should not be less than \(T_c \) for natural circulation to occur. In making the above comparisons, an instrument error of up to 500\(^\circ\) must be considered.
5.1.6 After temperatures have stabilized (1/2 - 1 hr expected), decrease steam flow from the "A" OTSG by shutting the MS supply valves to the MSR "A", HS-V35A and KS-V36A.

NOTE: Following the above actions and when equilibrium conditions are established, T_e from the plot in step 5.1.4 should have increased to about 205 OF.

5.2 If natural circulation is not established, attempt to regain flow by starting RCP's in the following sequence.

5.2.1 Attempt to restart RC-P-2A as follows:

a) Start and run RC-P-2A High Pressure Lift and Backstop oil pumps and establish seal b) Start RC-P-2A.

NOTE: The motors can be started with acceptable risk without the backstop lube oil pumps. RC pressures between 600 and 1200 P.S.I. should allow operation of the motors without the high pressure oil lift system. At pressures below 800 psi, start up without high pressure lift system may not be successful but may be attempted.

c) Open or check open seal return valve MJ-V-33B.

NOTE: Three start attempts are allowed from cold condition.

5.2.2 If RC-P-2A cannot be started, attempt to start RC-P-1A as follows:

a) Start and run RC-P-1A High Pressure Lift and Backstop Oil Pumps

b) Start RC-P-1A

c) Open/check open seal return valve MJ-V-33A.

5.2.3 If RC-P-1A cannot be started, start RC-P-1B or 2B as follows:

a) Obtain HP person to accompany A.O. to establish seal injection on RC-P-1B and 2B by opening MJ-V-379 and MJ-V-380.

NOTE: RHP must be prepared each shift designating personnel who will make entry.
5.2.4 Start AC Oil Lift and AC Backstop Pumps for RC-P-1B and 2B.

5.2.5 Verify intermediate and NSCCW is operating.

5.2.6 Verify Seal Injection Flow on RC-P-1B and 2B.

5.2.7 Open WU-V33 C & D. Verify RC Pump Seal staging by observing seal cavity pressure.

5.2.8 Verify RC Pump Seal Return Flow (< 1.91 gpm) on RC-P-1B and 2B.

5.2.9 With steps 5.2.2 through 5.2.7 complete, start RC-P-1B.

5.2.10 If RC-P-1B start attempt unsuccessful, start RC-P-2B.

5.2.11 Monitor the following during startup through the transient and thereafter for proper indication. Upper seal cavity pressure, lower seal cavity pressure, seal return temperature, upper seal leakage, seal return flow, pump shaft vibration and motor bearing temperatures.

5.2.12 Close WU-V33 on non-operating pumps.

5.2.13 Close seal injection valves on all but standby pump and readjust seal injection to minimize makeup.

5.2.14 Secure oil lift pumps on all non operating pumps.

5.2.15 If an RCP was successfully started, return RCS pressure and "A" OTSG level to the previous condition.

5.3 If no RC pumps can be started, attempt to establish natural circulation.

5.3.1 Verify RCS pressure is 900 ± 100 psig and "A" OTSG level 400-430. Adjust RCS pressure and OTSG level to reach and maintain those parameters.

5.3.2 Allow temperatures to stabilize for 1 hour. During this period of time, read and record all operable thermocouples every ten minutes.
5.3.3 If any thermocouple exceeds 1200°F prior to successfully establishing Natural Circulation, go to step 5.4.

5.3.4 If any 3 thermocouples exceed 1000°F prior to successfully establishing Natural Circulation, go to step 5.4.

5.3.5 If at any time during stabilization or natural circulation attempts T_h in the loop with the OTSG in the steaming mode exceeds 500°F proceed to step 5.4.

NOTE: Continue plotting T_h, T_c, and T_{stn} as in step 5.1.4.

5.4 If natural circulation is not established, go into NPI per EP33, starting with Step 3.2.