Office of Inspection and Enforcement
Attn: Mr. Ronald C. Haynes, Director
Region I
US Nuclear Regulatory Commission
631 Park Avenue
King of Prussia, PA 19406

Dear Sir:

Three Mile Island Nuclear Station, Unit 2 (TMI-2)
Operating License No. DPR-73
Docket No. 50-320
Licensee Event Report 82-028/03L-0

Attached please find Licensee Event Report 82-028/03L-0 concerning the low exhaust flowrate of the Auxiliary Building Ventilation System on September 15, 1982.

This event concerns Section 3.9.12 and is considered reportable under Section 6.9.1.9(b) of the Interim Recovery Technical Specifications.

This Licensee Event Report is being submitted after the thirty (30) day Technical Specification requirement as discussed by Mr. S. D. Chaplin of TMI-2 Licensing and Mr. J. S. Wiebe, Senior Resident Inspector, US Nuclear Regulatory Commission on Friday, October 15, 1982.

Sincerely,

B. K. Kanga
Director, TMI-2

GPU Nuclear Corporation is a subsidiary of the General Public Utilities Corporation.
At 0030 hours on September 15, 1982, the Auxiliary Building exhaust flowrate dropped from 65,000 cfm to 49,000 cfm for approximately 20 minutes then returned to 55,000 cfm.

The ventilation system was returned to service at 0522 hours. This LER is similar to LER 82-14. This event is considered reportable under 6.9.1.9(b) due to entry into the action statement of Technical Specification 3.9.12. This event had no effect on the health and safety of the public.

Investigation could determine no cause for the low flow condition. Investigation included a check of system components for broken fan belts, stuck dampers, etc. on both the Auxiliary Building and Fuel Handling Building Ventilation Systems. Additionally, personnel interviews and log checks were made for activities which could have impacted Auxiliary Building Ventilation exhaust flowrate.
LICENSEE EVENT REPORT
NARRATIVE REPORT
TMI-11
LER 82-0287/03L-0
EVENT DATE - September 15, 1982

I. EXPLANATION OF OCCURRENCE

At 0030 hours on September 15, 1982, the Auxiliary Building exhaust flowrate dropped from 65,000 cfm to approximately 49,000 cfm for a period of 20 minutes then returned to approximately 55,000 cfm. This event was first discovered at 0250 hours during a routine check by the Unit 2 Control Room Operators. This exhaust flowrate was below the minimum allowed exhaust flowrate specified in Recovery Operations Plan Surveillance Requirement 4.9.12.2.a.1. The Auxiliary Building exhaust flowrate was declared operable at 0522 hours on September 15, 1982.

This event is considered reportable under Section 6.9.1.9(b) due to entry into and compliance with the requirements of the action statement of Section 3.9.12 of the TMI-2 Recovery Technical Specifications.

This event is similar to LER 82-14 in which an oscillation existed in the Auxiliary Building ventilation exhaust flowrate. It is similar only in that it deals with the Auxiliary Building ventilation system and that the cause of the perturbation could not be identified.

II. CAUSE OF THE OCCURRENCE

Investigation could determine no cause for the low flow condition.

III. CIRCUMSTANCES SURROUNDING THE OCCURRENCE

At the time of the occurrence, the Unit 2 facility was in a long-term cold shutdown state. The reactor decay heat was being removed via loss to ambient. Throughout the event there was no effect on the Reactor Coolant System or the core.

IV. CORRECTIVE ACTIONS TAKEN OR TO BE TAKEN

Immediate

As discussed in the corrective actions of LER 82-14, an investigation was initiated promptly to determine the cause.

During the course of investigating the drop in exhaust flowrate, the operating exhaust fan train was shifted on four occasions with no impact on the approximate 55,000 cfm flowrate. The ventilation system was checked for broken fan belts, open doors, stuck dampers, etc. which could affect system flowrate. Included in the check were the supply and exhaust fan and filter damper positions, the supply and exhaust filter DP's, building DP, supply and exhaust flowrate, and also a check of the flowrate instrumentation (Auxiliary Building only). This was checked for both the Auxiliary Building and the Fuel Handling Building. Nothing was identified that would induce the dip in the exhaust flowrate to 49,000 cfm.
Subsequent investigation included a search of the Shift Foremen's log, the CRO log, the I&C work log, and interviews with Operations shift personnel and I&C personnel for activities which could have affected Auxiliary Building ventilation exhaust flowrate. In spite of the investigation, no specific cause could be identified which could account for the 20 minute dip in flowrate. However, it was determined that both the Auxiliary and Fuel Handling Building ventilation supply flowrates had been 10,000 cfm lower than normal for a period of time which included this event. This may have resulted in the perturbation dropping the flowrate below the minimum flowrate requirements.

Long-Term

Plant Engineering is preparing a list of data which would be necessary to evaluate events in the ventilation system that should be recorded on as timely a basis as practicable. This list should assist in improving the effectiveness and timeliness of determining deficiencies as they occur in the ventilation systems.

V. **COMPONENT FAILURE DATA**

N/A